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SUMMARY

Conservative schemes usually produce non-physical oscillations in multi-component �ow solutions.
Many methods were proposed to avoid these oscillations. Some of these correction schemes could
�x these oscillations in the pressure pro�le at discontinuities, but the density pro�le still remained
di�used between the two components. In the case of gas–liquid interfaces, density di�usion is not ac-
ceptable. In this paper, the interfacial correction scheme proposed by Cocchi et al. was modi�ed to be
used in conjunction with the level-set approach. After each time step two grid points that bound the
interface are recalculated by using an exact Riemann solver so that pressure oscillations and the density
di�usion at discontinuities were eliminated. The scheme presented here can be applied to any type of
conservation law solver. Some examples solved by this scheme and their results are compared with the
exact solution when available. Good agreement is obtained between the present results and the exact
solutions. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: gas–liquid interface; level-set approach; compressible �ow; numerical scheme

1. INTRODUCTION

Shock capturing schemes such as TVD or ENO are usually useful to accurately simulate
single component gas �ows. However, in the case of multi-component �ow, consisting of two
foreign gas interfaces or two-phase �ows, non-physical pressure �uctuations usually appear
in the solution across gaseous interfaces. These pressure �uctuations are created as a result
of the calculation of pressures from an equation of state based on the total energy in the
gas. In multi-component �ows, even when the densities and velocities are initially identical,
the internal energy of each �uid will be di�erent due to the di�erence in their speci�c heat
ratios �, and hence at one time step the energy di�usion across the interface will appear.
This discontinuity in � across the interface will cause an incorrect value for the pressure to
be calculated at the interface. In the next time step, a false velocity will subsequently be
calculated since its derivation was based on the incorrect pressure value.
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To date many researchers, Abgrall [1], Cocchi and Saurel [2], Cocchi et al. [3], Jenny
et al. [4], Karni [5; 6], Shyue [7] have proposed possible methods to overcome this prob-
lem. Karni [6] proposed to solve the pressure evolution equation across the material interface.
By using this type of pressure calculation a smooth pressure pro�le was obtained across
the interface without calculating the pressure based on the equation of state. Others sug-
gested use of a variety of quasi conservative schemes, e.g. Abgrall [1] Shyue [7]. In their
schemes, the density change across the interface was di�usive. In most schemes the shock
discontinuities are typically smeared over 2–3 grid points while the interface is smeared over
5–7 grid points. When dealing with gas phase only, the smearing could be acceptable. How-
ever, when dealing with two phase �ows such as gas and liquid phases with an accompanying
large density change between these two phases, any density di�usion across the interface is
strictly unacceptable. No mixing takes place between gas–liquid interfaces except in very spe-
cial cases. Thus, numerical di�usions could result in unphysical densities at the interfaces.
Therefore, a di�erent method should be employed to overcome this unphysical mixing by
eliminating pressure �uctuations at the interface and keeping a discontinuous density pro�le
at the interface. Cocchi et al. [3], Cocchi and Saurel [2] managed to achieve these goals
by employing a Godunov scheme coupled with a front tracking method. Their scheme uses
results derived from the exact Riemann solver for correcting the density di�usion and pressure
�uctuations at the interface. The pressure and density are corrected at the grid points across
the interface. Therefore, the numerical density di�usion and pressure oscillations are removed.
The work presented in this paper improves the existing scheme by changing the interface

tracking from a front tracking method to a front capturing scheme using the level-set approach.
Mulder et al. [8] employed the level-set approach for gas dynamic problems. They studied
two gas interface instabilities, so it was not required to preserve a sharp density gradient at
the interface. Therefore a Roe approximate Riemann solver for ideal gas equation of state
was employed. They used the level-set approach to track the interface position and follow
its evolution. Their method can be readily added to any schemes which are based on the
approximate Riemann solver such as TVD and ENO schemes for solving gas �ows based
on the ideal gas equation of state. It can handle the separation or merger of interfaces,
which are di�cult to perform with a front tracking method. In addition, the front tracking
method is more computationally demanding than the level-set approach which requires only
one additional equation to be added to the computational model.
The basic outline of the present scheme is to use a TVD scheme with the level-set approach

for solving the �ow �eld under study. After each iteration, application of the correction step to
the grid points on both sides of the interface is employed. This is performed using an exact
Riemann solver similar to Cocchi et al. [3]. For one-dimensional problems this method is
similar to that used by Cocchi et al. [3]. However, in the present procedure the correction step
has been improved for some cases and is modi�ed to be used with the level-set approach. This
method is simpler in its application to the two-dimensional problems than the front tracking
method and provides better results for the separation and merger of interfaces.
The outline of this paper is as follows: In Section 2 a description of the numerical scheme

is given. It contains a brief description about the level-set approach. A TVD scheme for
two �uids incorporating the level-set approach for tracking the interface is developed. Then
the corrector step employed to correct the pressure oscillation and density di�usion across the
material interfaces is presented; numerical examples are given in Section 3; Finally conclusions
are presented in Section 4.
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2. THE NUMERICAL SCHEME

2.1. Level-set approach

Mulder et al. [8] present a TVD scheme incorporating the level-set approach to track the
interface between two gases. The level-set approach is an interface capturing scheme based
on level-set functions. It can capture the interface between two grid points. Let the level-set
function  be de�ned as the distance between a grid point and the interface.  =0 designates
the material interface. Then positive  designates one material and negative  designates the
other material. Knowing the value of  the speci�c heats ratio can be de�ned as a function
of the level-set function.

�( )=

{
�;  ¿0 gas

n;  ¡0 liquid
(1)

The level-set function propagates with the local �uid velocity and can be written as the
advection equation in the non-conservative or conservative form.

 t + u x=0 (2)

or

(� )t + (u� )x=0 (3)

Equations (2) and (3) have their advantages and drawbacks. Some examples of these will be
presented in Section 3 and are also demonstrated by Mulder et al. [8]. The non-conservative
form (2) will produce better results in the cases where two �uids with large density ratio
advect at a constant velocity. However, for large velocity �uctuations which occur in a shock
tube �ow, it might produce a wrong interface position (for details see Section 3). Its main
advantage is that the density is not coupled with the level-set functions as in Equation (3).
Using the conservative formulation might create large gradients in the level-set functions in
the case of two �uids having a large density ratio, such as a gas–liquid interface. When
calculating �ows with large density gradients some numerical di�usion could appear at the
material interface that can lead to an incorrect position of the material interface in an advection
calculation at a constant velocity. However, when (3) is used for the calculation of a shock
tube problem the conservative level-set approach can give the correct position of the material
interface. In addition, (3) has the advantage that it can readily be added to any system of
hyperbolic conservation solvers. For these two reasons the decision was made to employ it
in the present computations.
The location of the interface can readily be by found satisfying the following equation:

 i i+1¡0 (4)

where the interface is located between grid points i; i + 1. Next the level-set propagation
equation will be incorporated into a system of hyperbolic conservation laws.

2.2. Incorporating the level-set approach with the approximate Riemann solver

An equation of state for each component is required, it is an important part of any exact or
approximate Riemann solver. This is not necessarily a straight forward step since a di�erent
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equation of state is needed for each �uid. When simulating gas–liquid interface, �nding a
suitable equation of state for both phases is quite problematic. One equation of state that
is widely employed is the sti�ened gas equation of state since it can be used to describe
both the gas and the liquid. It has been used by Cocchi et al. [3], Cocchi and Saurel [2]
and Shyue [7] for calculating gas–liquid interfaces. Further information about this type of
equation of state can be found in Meniko� and Plohr [9]. The total energy per unit of
volume is

E=
p+ �B
(�− 1) +

1
2
�u2 (5)

where p is the pressure, � is the density, B and � are parameters for water, �=7:415 and
B=296:3MPa. When this equation is used for gases, B is set to zero and � is equivalent to the
speci�c heat ratio, where for air, �=1:4. It is possible to employ any equation of state as long
as both the Riemann solvers are updated accordingly. Here an approximate Riemann solver
was modi�ed to incorporate the sti�ened gas equation of state and the level-set approach. The
proposed solver is based on that by Mulder et al. [8].
The Euler equations including the level-set function, are written in vector form as follows:




�

�u

E

� 



t

+




�u

�u2 + P

u(E + P)

�u 



x

=0 (6)

where � is the density, u is the velocity, p is the pressure, E is the total energy per unit of
volume and  is the level-set function.
The Jacobian matrix in this case is

A=




0 1 0 0
�− 3
2

u2 −  � (3− �)u (�− 1) �

�− 3
2

u3 − uH − u � H − (�− 1)u2 �u u�

−u  0 u




(7)

where H is the enthalpy and �=(@p=@�)|� which is the derivative of pressure as a function
of density while the internal energy is kept constant.
The eigenvalues of the Jacobian matrix A are:

�1 = u+ c; �2 = �3 = u; �4 = u− c (8)

where c is the speed of sound, de�ned as

c=

√
�(p+ B)

�
(9)
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The eigenvectors are:

r1 =




1

u+ c

H + uc

 


 ; r2 =




1
cu
1
2
u2

 


 ; r3 =




0

0
−�
�− 1
1


 ; r4 =




1

u− c

H − uc

 


 (10)

A local �ow �uctuation �W =WR −WL can be projected onto the characteristic �eld �W =∑
i �iri where the local wave strengths are:

�1 =
�p− �c�u
2c2

; �2 =
c2��− �p

c2
; �3 =�� ; �4 =

�p+ �c�u
2c2

(11)

Having this information one can proceed and use any type of solver for solving the �ow
�eld under consideration. In the present work the Harten [10] and Yee [11] modi�ed �ux TVD
scheme is used. Other schemes may also be used. The �rst step is to write Roe’s approximate
Riemann solver for multi-component �ows. We begin with the basic Roe’s averages which
are:

�∗ =
√
�L�R (12)

u∗ =
√
�LuL +

√
�RuR√

�L�R
(13)

H ∗ =
√
�LHL +

√
�RHR√

�L�R
(14)

 ∗ =
√
�L L +

√
�R R√

�L�R
(15)

Similar to the approach of Mulder et al. [8] Equation (17), is de�ned as the variable that
represents changes in energy due to changes of phase or �uid. The same equation has been
previously employed by Mulder et al. [8], Karni [5]. Further details regarding this equation
can be found in Mulder et al. [8]. It is based on �∗ which must be approximated �rst
Equation (18).

c∗ =
√
(�∗ − 1)(H ∗ − 1

2u
∗2) (16)

�∗ =
(pR − pL)− (�∗ − 1)(((p+ �B)=(�− 1))|R − ((p+ �B)=(�− 1))|L)

�∗( R −  L)
(17)

�∗( ∗) =
( ∗ −  L)�R − ( R −  ∗)�L

 R −  L
(18)

Once the approximate Riemann solver has been de�ned, any scheme can be used to calculate
the numerical �ux.
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The above scheme can be used for multi-component calculations. However, Karni [5] proved
that such a scheme produces large errors of �rst order magnitude, at the material interface
between two gases. The errors are generated due to the sharp change in � at the interface and
result in pressure �uctuations. These cause �uctuations in all other �ow variables. Therefore,
a correction scheme is required to obtain the correct solution at the material interface; this
will be described next.

2.3. Correction step

The interface correction step is based on that proposed by Cocchi et al. [3], Cocchi and
Saurel [2]. The main idea in this approach is that the two grid points just in front and behind
the interface are recalculated in the corrector step using an exact Riemann solver. The results
obtained from the exact Riemann solver are used for updating the values in the two grid
points across the interface; thus, a sharp density gradient is maintained. There are two types
of correction steps depending upon the location of the interface at time step n+ 1. The �rst
is used when the interface remains within the same two grid points. The other is used when
the interface moves forward or backward, i.e. one of the two previous grid points is changed.
For example at time step n, the interface was located between grid point i; i + 1; while at
time step n + 1 the interface is located between grid points i + 1; i + 2. For each case a
di�erent interface correction step is utilized. An outline of the correction step is as follows;
�rst, the location of the interface at time n between grid points i; i + 1 is found using (4).
This procedure was described in Section 2.1; when  n

i+1 
n
i ¡0 the interface is located between

the grid points i and i+ 1. The second step is to calculate an exact Riemann solver for grid
points i; i + 1 using the sti�ened gas equation of state.
The correction step, when the interface is still located between grid points i; i + 1, is

presented �rst. The interface location at the next time step n+ 1 can readily be found using
Equation (4) with the level-set functions for time step n+ 1. Based on the level-set function
the interface location ( =0) was interpolated by using the following equation:

xmi=
| n+1

i |
| n+1

i+1 |+ | n+1
i | �x + xi (19)

The interface location is needed to calculate the new values of the grid points on both sides
of the interface. This value is interpolated from the results of the exact Riemann solver with
results from the TVD solver at time step n+ 1 using the following equations:

Un+1
i =

xi − xi−1
xmi − xi−1

(U ∗
l −Un+1

i−1 ) +Un+1
i−1 (20)

Un+1
i+1 =

xi+1 − xi+2
xmi − xi+2

(U ∗
r −Un+1

i+2 ) +Un+1
i+2 (21)

where values marked with a star are obtained from the exact Riemann solver and include
either left or right propagating waves. These Equations (20) and (21) are similar to those of
Cocchi et al. [3] except that here the interface location is determined by using the level-set
functions.
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The other correction step is used when the interface propagates to a new location. For
example, at time step n+ 1 it is located between grid points i + 1; i + 2 or i; i − 1; by using
Equation (4) with the level-set function calculated for time step n + 1, the new location of
the interface can be determined. The corrector step as given by Cocchi, Saurel et al. [3] for
the case when the interface propagates forward is

Un+1
i+1 =U ∗

l (22)

In addition, the parameters � and B of the equation of state are updated according to the
position of the interface corresponding to the values of the level-set function at time step
n+ 1. This is performed using Equation (1).
However, here the other grid point must be corrected as well, otherwise it will remain

di�used. This correction is not included in the procedure employed by Cocchi et al. [3].
To demonstrate the importance of this correction step a gas–liquid interface propagating at a
constant velocity will be discussed. At the time step n+ 1, the interface location has moved
to a new location between grid points i + 1 and i + 2. The correction step is applied and
the liquid parameters at grid point i + 1 are obtained. However, the liquid at grid point i is
slightly di�used due to the previous interface location; it has lower density and energy than
it had previously, at time step n. Therefore, one must correct the results at grid point i as
well as those at grid point i + 1, otherwise numerical errors are created.
We de�ne the following correction for grid point i:

Un+1
i = 1

2 (U
∗
l +Un+1

i−1 ) (23)

Now that the corrector step has been de�ned a few solutions to the one-dimensional �ows
based on the above scheme shall be presented.

3. NUMERICAL EXAMPLES

The present section contains a few numerical examples of one-dimensional �ows. The solu-
tions obtained are compared with results of other researchers [1–3] and with the exact solution
when available. It is shown that employing the proposed scheme produces accurate results,
especially near the interface.

3.1. Example 1: Two gas shock tube

The �rst example is taken from Abgrall [1]. This is a classical shock tube �ow where helium
is the driver gas and air is the driven gas. In two-gas interface mixing is possible, however
using the above scheme which was designed for immiscible �uids results in a sharp density
discontinuity between the two gases. In this example, a uniform grid of 100 points was used.
The CFL number is 0.9 and the initial conditions are given in Table I.
Abgrall [1] has shown that solving this example creates a density oscillation at the two-gas

interface. Abgrall [1] even had a very small velocity kink at the interface. Therefore, it is
worth testing this problem with the present scheme. The results shown in Figure 1 use a
superbee limiter for the linear �elds and a Van Leer limiter for the non-linear �elds. The
results for pressure and velocity are continuous across the interface. They agree well with the
exact solution and the interface location is captured correctly.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:985–1007



992 D. IGRA AND K. TAKAYAMA

Table I. Initial conditions for example 1.

Density (Kg=m3) Pressure (bar)

Helium (left) 14.54903 194.3
Air (right) 1.16355 1

Next the superbee limiter was used for all �elds, the results for this case are shown in
Figure 2. When compared with Figure 1, the density pro�le shows slightly better agreement
with the analytical solution near the interface and a sharp density gradient at the interface
is observed. However, at x=0:5 a slight density increase appears, which is probably caused
by the compressibility e�ects of the superbee limiter Yee [11]. The numerical velocity and
pressure obtained with this limiter agree well with the exact solution.
In the next example a one step non-conservative scheme is used to calculate the level-set

functions, which has second-order accuracy both in time and in space. A minmod limiter is
employed in this example as well. The result is shown in Figure 3. The main di�erence
between this calculation and the previous one is that the interface location is shifted by about
2 grid points. Except for this discrepancy good agreement is obtained between the present
results and the exact solution. The error in the interface location is created on account of the
level-set function being calculated in a non-conservative form. In the problems under study
there is a large velocity change at the interface at the initial stage when the ‘diaphragm’
between the high and low pressure sections ruptures. At �rst the velocity changes are large
and might result in this type of error. A higher order solver might improve the result, since
Mulder et al. [8] captured the interface location using a multi step non-conservative scheme.

3.2. Example 2: Hydrodynamic shock tube

This example is a hydrodynamic shock tube taken from Cocchi et al. [3]. The initial conditions
are given in Table II. The driver gas is pressurized air and the driven section is �lled with
water. A minmod limiter and CFL=0:9 are used. The calculations were performed on uniform
grid of 100 points. The interface location is captured accurately in spite of the di�usive limiter
that was employed in this example.
The results obtained are shown in Figure 4. Good agreement between the numerical results

and the exact solution near the gas–liquid interface is shown. As expected the pressure and
velocity are continuous across the interface. Near the expansion wave their agreement is not
good mainly due to the use of the di�usive minmod limiter. In other locations in the �ow
�eld the agreement between the numerical �ow variables and the exact solution is very good.
Based on the one-dimensional examples presented so far, it is possible to estimate the

error of the interface location by comparing the numerical results with the exact solution.
This comparison is carried out for the results shown in Figures 1, 2 and 4. In these cases
the level-set functions were calculated in a conservative form. The interface location was
calculated using Equation (19). The error is de�ned as the di�erence between the interface
location as derived from the exact solution and that calculated based on the level-set approach.
The results of this calculation are shown in Table III. The error in all the calculations is
smaller than �x which is 0.01 indicating that the interface location was captured with at least
�rst-order accuracy.
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Figure 1. Example 1,  is calculated in conservative formulation Superbee limiter for linear waves, CFL=0:9.
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Figure 2. Example 1,  is calculated in conservative formulation Superbee limiter, CFL=0:9.
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Figure 3. Example 1,  is calculated in non-conservative formulation minmod limiter, CFL=0:9.
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Table II. Initial conditions for example 2.

Density (Kg=m3) Pressure (bar)

Air (left) 1254 9000
Water (right) 1000 1

3.3. Example 3: Interaction of two blast waves in water

This test case is based on the example presented by Woodward and Colella [12]. They
originally calculated the interaction of two strong blast waves in air. Initially the �ow �eld
is divided into three parts. The length of the left and right sections is 10% of the total �ow
�eld. They contain high pressure air while the central part contains low pressure air. The
high pressure regions create blast waves in the central part which interact with each other.
Ivings et al. [13] calculated a similar problem with three di�erent gases �lling each part of
the initial �ow �eld as [12].
Here the central part is �lled with ambient water, two strong blast waves in air interact in

water. At both ends of the �ow �eld, solid boundaries are imposed therefore the waves are
re�ected back into the �ow �eld. The initial conditions are as follows:

high pressure air of 1010 Pa and density of 1:25 kg=m3 at x¡0:1 m
high pressure air of 109 Pa and density of 1:25 kg=m3 at x¿0:9 m

The parts of high pressure air sandwich the water part at 105 Pa and the density of
1000 kg=m3. Initially all the parts are quiescent. The calculation �eld is 1 m long and was
divided into 2000 equally spaced grid points. The CFL number is 0.9 and a minmod limiter
is used.
In Figure 5 isopycnics show the blast wave propagation in the x–t diagram. The blast

waves (B1–B4) and contact surfaces (C; I) are clearly visible. At about 90 �s a complex
wave interaction takes place. The two blast waves (B1, B2) collide with each other creating
a new series of waves (B3, B4, C). At about 125 �s the right blast wave (B3) interacts with
the gas–liquid interface generating another wave system (T).
When the diaphragms are instantaneously removed at both sides, two strong blast waves

propagate into the water. At the same time, two rarefaction waves propagate in the opposite
direction into the air. These waves are later re�ected o� the solid boundary and propagate
back into the water. The wave on the left side (B1) interacts �rst since, due to its higher
initial pressure, it propagates faster. The interaction can be seen in Figure 6, where a density
jump at the shock wave is present at x=0:2 m. A similar wave appears at the right-hand
side (B2); however, it is weaker due to its lower initial pressure. Previously Woodward and
Colella [12], Ivings et al. [13] studied only gaseous phase �ow. In those simulations when
a rarefaction wave interacted with a contact discontinuity, it was re�ected from the contact
surface and only a minute amount of energy was transmitted to the lower pressure gas. In the
present case, on the contrary, the acoustic impedance of the high pressure gas and that of the
low pressure water are in a similar order of magnitude. Therefore, each time when a rarefac-
tion wave is re�ected from the contact discontinuity, a larger partial energy is transmitted into
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Figure 4. Example 2, air water Riemann problem, minmod limiter CFL=0:9:
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Table III. Interface location error analysis.

Type Exact location Location of  mi =0 Error (exact −  mi)

He-air combination limiter 0.84696 0.8408635 −6× 10−3
He-air superbee limiter 0.8483462 0.84123 7:116× 10−3
Air water minmod limiter 0.4002784 0.3972799 2:9985× 10−3

Figure 5. Density contours in space and time. The solid lines are water of density 1000–1575
with equal steps every 25 (kg=m3). The dashed lines are air with density values of 0.5–1.52 with equal

steps every 0:025 (kg=m3).

the water. Those transmitted waves create the ‘staircase-like’ set of waves appearing at all
stages of the present simulation. These are especially noticeable in the velocity and pressure
�elds.
Another di�erence observed between the present case and the previous ones where only

gases were involved is the maximum density experienced in the water after its initial inter-
action with the blast waves. In air, the maximum achievable density on both sides is similar
due to the limitation of the maximum density ratio in gases. For air this ratio is at most 6
times larger than the initial density. In water however, the density on the left side is higher
than that on the right side. To achieve similar densities on both sides of water a much higher
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Figure 6. Flow �eld at t=15 (�s).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:985–1007



1000 D. IGRA AND K. TAKAYAMA

initial pressure is required. Therefore, the water densities behind each blast wave are di�erent
in the present simulation.
At the next time step shown in Figure 7, the two blast waves propagate towards each other.

With the elapse of time the rarefaction wave on the left-hand side interacts more strongly
with the contact surface than that on the right, resulting in stronger transmitted waves that
are more easily observed. There are more waves appearing on the left-hand side due to the
higher pressure jump across the left-hand side blast wave. Therefore, it has a higher sound
speed and the waves propagation speed is higher there. In addition, this higher initial pressure
causes the interface on the left-hand side to bend more than that on the right-hand side, as
seen in Figure 5.
Figure 8 shows the �ow �eld just before the blast waves (B1, B2) collide with each other

at about x=0:66m. This can be determined from the fact that the water density is still close
to its initial value at about x=0:67 m. Very large changes in pressure and density are also
found near this location. A short time later, the collision between the two blast waves results
in pressure and density peaks as seen in Figure 9, which disappear at a later time due to a
dissipation process.
In Figure 10 the stronger blast wave (B3) continues to propagate to the right, at this time

it is located at about x=0:71 m. At the same time the weaker wave (B4) propagates to the
left which can be seen at about x=0:61 m. In between these waves, a contact discontinuity
(C) is generated. As these waves propagate in opposite directions, their pressure and density
values decrease.
At a later time, the stronger blast wave (B3) interacts with the right interface as seen in

Figure 11. As a result a weak shock wave (T) is transmitted into the air while an expansion
wave is created in the water. This behaviour is similar to the case in which an underwater
shock wave interacts with a gas bubble, see Cocchi and Saurel [2] for more details. Figure 11
shows the contact discontinuity (C) and the weak blast wave (B4) continuing to propagate to
the left. The transmitted wave in air has a very high velocity. This is due to the high pressure
generated in air by the blast wave that results in a high speed of sound. A velocity peak
can be seen in Figure 11 at about x=0:92m. Once this wave reaches the wall it is re�ected
back to the gas–liquid interface where some fraction of its energy is transmitted to the water,
creating a new ‘staircase like’ wave structure as seen in Figure 12. This wave then re�ects
o� the gas–liquid interface and propagates back towards the wall. This process continues until
the end of the present simulation. At (t=151:5 �s shown in Figure 12), the rarefaction wave
in the water can be clearly seen. This wave was generated when the blast wave (B1) �rst
interacted with the left gas–liquid interface.

4. CONCLUSIONS

As is clearly evident from the numerical examples, the proposed scheme is suitable for
handling gas–liquid interfaces. It does not create pressure oscillation or density di�usion
at the interface. The interface was captured using the level-set approach which was added
to the system of conservation laws. This system can be solved by employing any type
of solver. A correction scheme based on Cocchi and Saurel [2], Cocchi et al. [3] was
used. It was modi�ed to be employed with the level-set approach and a moving
interface.
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Figure 7. Flow �eld at t=57:8 (�s).
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Figure 8. Flow �eld at t=94 (�s).
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Figure 9. Flow �eld at t=95:5 (�s).
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Figure 10. Flow �eld at t=102:5 (�s).
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Figure 11. Flow �eld at t=131:2 (�s):
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Figure 12. Flow �eld at t=151:5 (�s).
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Solutions of test examples have been presented and this scheme converged to the exact
solution. Also presented is an example of two blast waves generated in air and interacting in
water. This interaction resulted in a complex wave patterns which was handled nicely by the
proposed scheme.
This scheme will be extended to two dimensional �ow �elds containing gas liquid interfaces.
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